Δευτέρα, 1 Ιουλίου 2013

Συνέντευξη του Αντώνη Κυριακόπουλου από τους μαθητές του Ιλίου

Συνέντευξη του Αντώνη Κυριακόπουλου


από τους μαθητές του 7ου  ΓΕΛ  Ιλίου.


27/2/2013





  • Τι είναι αυτό που σας γοητεύει στα Μαθηματικά και πώς αποφασίσατε να ασχοληθείτε με αυτά ;


Απάντηση. 
Εκείνο που με γοητεύει περισσότερο στα μαθηματικά και που είναι και ο λόγος για τον οποίο αποφάσισα από μικρός να ασχοληθώ με αυτά, είναι η αυστηρότητα των συλλογισμών που έχει σαν συνέπεια την βεβαιότητα των συμπερασμάτων. 

Όλοι μας έχουμε αισθανθεί ικανοποίηση και  χαρά  όταν κάνουμε μια απόδειξη μόνοι μας. Αυτό συμβαίνει διότι όταν στα Μαθηματικά  κάνουμε  μια απόδειξη μόνοι μας , δεν αναπαράγουμε αποθηκευμένη γνώση, όπως συμβαίνει για παράδειγμα στο μάθημα της ιστορίας, αλλά δημιουργούμε κάτι μόνοι μας. 

Δημιουργούμε μια σειρά συλλογισμών, με σαφήνεια και με λογική αυστηρότητα, που μας οδηγούν  σ' αυτό που θέλουμε να αποδείξουμε. Και αυτό είναι πράγματι πολύ σπουδαία πνευματική εργασία , διότι σε μια απόδειξη στα μαθηματικά πρέπει να ξέρουμε: Τι θα πούμε, πότε θα το πούμε και γιατί θα το πούμε.



  • Ποιος τομέας των Μαθηματικών σας κεντρίζει περισσότερο το ενδιαφέρον και για ποιο λόγο;


Απάντηση.  
Στα μέσα περίπου του 19ου αιώνα διαπιστώθηκε ότι η κλασική (Αριστοτελική) Λογική δεν είναι επαρκής για να υπηρετήσει τη λογική εδραίωση και ανάπτυξη των μαθηματικών. Η διαπίστωση αυτή οδήγησε στην εξαρχής θεώρηση της λογικής και την αντιμετώπιση αυτής με  μαθηματικές  μεθόδους. 

Έτσι γεννήθηκε η Μαθηματική Λογική, που ονομάζεται επίσης και Συμβολική Λογική ή απλά Λογική (Boole, Frege, Russell, Tarski, Gödel, για να αναφέρω μερικούς μόνο από τους πρωτεργάτες ). Η Μαθηματική Λογική συστηματοποίησε την κλασική λογική, διεύρυνε αυτήν και άνοιξε νέους ορίζοντες άγνωστους στην κλασσική λογική.  

Mε τη βοήθεια της Μαθηματικής Λογικής, τα μαθηματικά αναθεωρήθηκαν, θεμελιώθηκαν, « τακτοποιήθηκαν» , έγιναν κατανοητά και επομένως ευκολότερα και έτσι άρχισε μια ξέφρενη ανάπτυξή τους, η οποία συνεχίζεται μέχρι σήμερα ( συνέπεια αυτού είναι και η ξέφρενη ανάπτυξη της τεχνολογίας). 

Έχει εκτιμηθεί ότι οι μαθηματικές γνώσεις κάθε οχτώ με δέκα χρόνια διπλασιάζονται. Έτσι είναι αδύνατον ένας άνθρωπος να γνωρίζει όλα τα μαθηματικά. Είναι δυνατόν όμως να αποκτήσει τις βάσεις ώστε να είναι σε θέση να διαβάσει και να κατανοήσει μια οποιαδήποτε μαθηματική θεωρία. 

Οι βάσεις αυτές  μου  κεντρίζουν περισσότερο το ενδιαφέρον και είναι οι εξής: « ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ», « ΘΕΩΡΙΑ ΑΠΟΔΕΙΞΕΩΝ», «ΘΕΩΡΙΑ ΣΥΝΟΛΩΝ» , « ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ» . « ΘΕΜΕΛΙΩΣΗ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ» ΚΑΙ « ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ». Αυτά αποτελούν τα ιδιαίτερα ενδιαφέροντά  μου και αυτός είναι ο λόγος που τα πρώτα μου βιβλία αναφέρονται στα παραπάνω αντικείμενα.


Related Posts Plugin for WordPress, Blogger... Άδεια Creative Commons
Αυτό το εργασία χορηγείται με άδεια Creative Commons Αναφορά Δημιουργού-Μη Εμπορική Χρήση 4.0 Διεθνές .